INCLUDE PARAMETERS: <name of file>
Starts processing the content of given file. The search of file will be performed in the current directory, all search paths (see option -I). For every path the content of samples, headers, traces folders will be also examined. You can also type just the name of file without
INCLUDE PARAMETERS: <name of file>
Starts processing the content of given file. The search of file will be performed in the current directory, all search paths (see option -I). For every path the content of samples, headers, traces folders will be also examined. You can also type just the name of file without
INCLUDE PARAMETERS: <name of file>
Starts processing the content of given file. The search of file will be performed in the current directory, all search paths (see option -I). For every path the content of samples, headers, traces folders will be also examined. You can also type just the name of file without include before it.
before it.
before it.
tcp
int v1 = 0
int v2 = 0
.host ''
.url ''
.extension ''
FILTER PARAMETERS: <name of interface> <filter string>
Sets the fast low-level filter (which is used by tcpdump) for the given interface. The format of filter is described in libpcap (WinPcap) or tcpdump documentation. See "
samples/my_gateway"
0 "tcp"
CLEARMASK PARAMETERS: no parameters
The mask of packet (the set of previously defined conditions) will be cleared. New mask will correspond to any packet. This command is usually contained in headers to make the mask correspond to all packets of given type (ex: TCP packets).
//dstport = http
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
(
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
(
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to WAIT. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by WAIT,
ADD commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after
SEND PARAMETERS: {accept | drop | any }
In common regime generates the packet defined above. In other regimes (testing packet filter, see command
FASTTEST PARAMETERS: no parameters
and option -c) may simply separate packets one from another, so by this command the current content of buffer will be fixed and the new packet will be registered. The requests after command don't make sense in common regime (only while testing packet filter).
but before
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
,
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "
SEND PARAMETERS: {accept | drop | any }
In common regime generates the packet defined above. In other regimes (testing packet filter, see command
FASTTEST PARAMETERS: no parameters
and option -c) may simply separate packets one from another, so by this command the current content of buffer will be fixed and the new packet will be registered. The requests after command don't make sense in common regime (only while testing packet filter).
WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
stop waiting if it was accepted after
SEND PARAMETERS: {accept | drop | any }
In common regime generates the packet defined above. In other regimes (testing packet filter, see command
FASTTEST PARAMETERS: no parameters
Enables fasttest regime for packet filter test. See "
samples/FASTTEST PARAMETERS: no parameters
".
and option -c) may simply separate packets one from another, so by this command the current content of buffer will be fixed and the new packet will be registered. The requests after command don't make sense in common regime (only while testing packet filter).
but before
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to WAIT. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by WAIT,
ADD commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
PRECISEWAIT PARAMETERS: no parameters
After the work of WAIT command (its analogs) all trace threads will be blocked until the next call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. So there will be no missed packets between subsequent calls to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command.
COPYREC PARAMETERS: no parameters
The received packet (see command
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
, its analogs) will be copied to the buffer of current packet. Precision waiting must be first enabled (command
PRECISEWAIT PARAMETERS: no parameters
After the work of WAIT command (its analogs) all trace threads will be blocked until the next call to WAIT command. So there will be no missed packets between subsequent calls to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command.
). See also
NOTCOPYREC PARAMETERS: no parameters
Reverses the action of
COPYREC PARAMETERS: no parameters
The received packet (see command
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
, its analogs) will be copied to the buffer of current packet. Precision waiting must be first enabled (command
PRECISEWAIT PARAMETERS: no parameters
After the work of WAIT command (its analogs) all trace threads will be blocked until the next call to WAIT command. So there will be no missed packets between subsequent calls to WAIT command.
). See also
NOTCOPYREC PARAMETERS: no parameters
Reverses the action of
COPYREC PARAMETERS: no parameters
The received packet (see command WAIT, its analogs) will be copied to the buffer of current packet. Precision waiting must be first enabled (command PRECISEWAIT). See also
NOTCOPYREC PARAMETERS: no parameters
Reverses the action of COPYREC command.
command.
command.
command.
command.
command.
QUIET PARAMETERS: no parameters
Instructs to not display some annoying messages.
CYC PARAMETERS: <number of iterations>
Command instructs that next
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) or next block of script will be processed by several times = <number of iterations>. The "inf" value is available which means infinite iterant processing.
inf {
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
(
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to WAIT. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by WAIT,
ADD commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after
SEND PARAMETERS: {accept | drop | any }
In common regime generates the packet defined above. In other regimes (testing packet filter, see command
FASTTEST PARAMETERS: no parameters
and option -c) may simply separate packets one from another, so by this command the current content of buffer will be fixed and the new packet will be registered. The requests after command don't make sense in common regime (only while testing packet filter).
but before
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
,
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
ip.hlen == 5 {
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
= data
v1 = CURPOS
This special value allows to get the current value of byte pointer.
v1 += 4
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
('GET'
, v1)
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1 {
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
= data
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
('Host:'
, 250)
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1 {
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
(' '
, 250)
PASS PARAMETERS: <number of bytes>
Increases the byte pointer for the given <number of bytes>.
1
SETPOS PARAMETERS: <field's name> <decimal value of a new position>
Sets a new position for the given field.
(host, CURPOS
This special value allows to get the current value of byte pointer.
)
v1 = CURPOS
This special value allows to get the current value of byte pointer.
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
('\r'
)
v2 = CURPOS
This special value allows to get the current value of byte pointer.
v2 -= v1
SETSIZE PARAMETERS: <name of field> <decimal value of a new size of field>
Allows to specify the size for fields which don't have concrete size initially (strings). It can be also used to change the size for fields with concrete size (hexadecimal numbers). Value "any" may be used to specify the undefined size. A variable may be given so the size may be calculated before. See "
samples/http_parser".
(host, v2)
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
data
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
(' '
)
PASS PARAMETERS: <number of bytes>
Increases the byte pointer for the given <number of bytes>.
1
int urlStartPos = CURPOS
This special value allows to get the current value of byte pointer.
SETPOS PARAMETERS: <field's name> <decimal value of a new position>
Sets a new position for the given field.
(url, urlStartPos)
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
(' HTTP'
)
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1) {
int urlEndPos = CURPOS
This special value allows to get the current value of byte pointer.
int size = CURPOS
This special value allows to get the current value of byte pointer.
size -= urlStartPos
SETSIZE PARAMETERS: <name of field> <decimal value of a new size of field>
Allows to specify the size for fields which don't have concrete size initially (strings). It can be also used to change the size for fields with concrete size (hexadecimal numbers). Value "any" may be used to specify the undefined size. A variable may be given so the size may be calculated before. See "
samples/http_parser".
(url, size)
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
= urlStartPos
int pagePathEnd = urlEndPos
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
('?'
, urlEndPos)
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1) {
pagePathEnd = CURPOS
This special value allows to get the current value of byte pointer.
}
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
= pagePathEnd
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
('/'
, urlStartPos)
int slashPos = 0
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1) {
slashPos = CURPOS
This special value allows to get the current value of byte pointer.
}
POS PARAMETERS: <new position> | <field's name>
Sets the <new position> of byte pointer. In the case of <field's name> new position will be equal to field's position.
= pagePathEnd
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
('.'
, slashPos)
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to GOTO command but performs back search.
command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
or
GOTOB PARAMETERS: <value of any type> [<stop position>]
Is similar to
GOTO PARAMETERS: <value of any type> [<stop position>]
Performs the search of the given value in current packet. The search will be started from the current position of byte pointer. Value may has any type. The result of search is available through
GOTORES
This is a special value which allows to get the result of last search performed by GOTO or GOTOB command. 1 - successful search, 0 - not successful search.
keyword. In the case of successful search the byte pointer will be moved to the found entry. Stop position may be equal to -1. It means search to the end of packet. Stop position may be omitted but in this case parameters must be enclosed in brackets.
command but performs
BACK PARAMETERS: <number of bytes>
Reduces the pointer for the given <number of bytes>.
search.
command. 1 - successful search, 0 - not successful search.
= 1) {
PASS PARAMETERS: <number of bytes>
Increases the byte pointer for the given <number of bytes>.
1
SETPOS PARAMETERS: <field's name> <decimal value of a new position>
Sets a new position for the given field.
extension CURPOS
This special value allows to get the current value of byte pointer.
int size = pagePathEnd
size -= CURPOS
This special value allows to get the current value of byte pointer.
SETSIZE PARAMETERS: <name of field> <decimal value of a new size of field>
Allows to specify the size for fields which don't have concrete size initially (strings). It can be also used to change the size for fields with concrete size (hexadecimal numbers). Value "any" may be used to specify the undefined size. A variable may be given so the size may be calculated before. See "
samples/http_parser".
extension size
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(extension = 'html'
) {
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
'$host$$url$\n'
}
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(extension = 'htm'
) {
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
'$host$$url$\n'
}
IF PARAMETERS: <value1> <type of compare> <value2> "{" <first block of script> "}" [ "else" "{" <second block of script> "}" ]
Processes the first block of script if condition is met, otherwise processes the second block if it is specified. <Types of compare>: = (==), !=, >, <, >=, <=. Hexadecimals number are treated as strings (with 0x prefix). If you have problems try to watch how these values are represented by string using
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
command for example.
(extension = 'php'
) {
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
'$host$$url$\n'
}
}
else {
PRINT
Displays the given message. Use symbol
in message to indicate that line feed must be performed.
'$host$$url$\n'
}
}
}
}
}
UNFIX PARAMETERS: no parameters
By default after the work of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in
DEFAULTS PARAMETERS: {accept | drop | any |
REVERS
Request specification. May only be given in parameters for DEFAULT command. Instructs to reverse the request for every packet.
}
Defines default requests for packets. These requests will be applied when there are not enough explicitly defined requests for some packet (specified as parameters to command SEND,
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
and its analogs). Initially default requests are ACCEPT ANY ANY... i.e. a single request for the first interface specified via option -d.
(command DEFAULT). For TCP
DEVICE PARAMETERS: <type of device> {<name of interface>}
Reopens interfaces. The type of device: eth, ip, tcp. The name of device is the same as for -d option, depends on the type of device. New line terminates the list of names.
the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
,
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
(
WAITALL PARAMETERS: no parameters
The analog of
WAIT PARAMETERS: {accept | drop | any }
Waits for packet whose mask is defined above. The command will finish work when such packet is received on waitable interface. The waitable interface is interface for which strict request (accept or drop) have been specified in parameters to command or in defaults (command DEFAULT). For TCP device the command will only wait data on the main interface. In the general case command may wait no one but several packets (added by
ADD command). If any of them is received then command terminates. Command waits packets until timeout expires (command
TIMEOUT PARAMETERS: <interval in milliseconds>
Defines the timeout for WAIT command (and its analogs), also for imitation of application's work. Null value means infinite timeout (such timeout will not be applied for imitation of application's work). In the case of negative value its absolute value will be obtained as timeout, but WAIT command (its analogs) will work differently: it will always wait for the whole timeout (not terminating on first received packet). So several packets may be registered as received. This command also defines the timeout for TCP server while waiting for connections.
). See "
samples/waiting_packets.fws".
command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD
Alias of
TOWAIT PARAMETERS: {accept | drop | any }
Analog of WAIT command. Adds the above packet to the set of packets which will be waited by command WAIT or its analogs. This command does not start actual waiting (doesn't suspend script execution). Nevertheless, just after adding the packet may be registered as received. If some packet is registered as received before the call to WAIT (
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after SEND but before WAITALL started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
command (or using of
UNFIX PARAMETERS: no parameters
By default after the work of WAIT command (its analogs) the statuses for all waited packets will be fixed, so there may be no packets to wait for the next call to WAIT. This command marks these old packets as newly added. The previous status for them will be lost. Take a note of that ALL old packets will be unfixed, so they will be waited: this may cause unexpected results. Consider the use of
CLEARREG PARAMETERS: no parameters
Clears the information about all the packets which were added to the waited ones (by WAIT,
ADD commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
command).
) then the command will ignore it and wait for a next packet (see also
SENDWAITOTHER PARAMETERS: no parameters
Works similar to "SEND WAITALL" sentence. Purpose: make atomic operation. Without this command there would be a chance that a waited packet did not cause command WAITALL stop waiting if it was accepted after
SEND PARAMETERS: {accept | drop | any }
In common regime generates the packet defined above. In other regimes (testing packet filter, see command
FASTTEST PARAMETERS: no parameters
and option -c) may simply separate packets one from another, so by this command the current content of buffer will be fixed and the new packet will be registered. The requests after command don't make sense in common regime (only while testing packet filter).
but before
WAITALL PARAMETERS: no parameters
The analog of WAIT command. Doesn't add the previously defined packet to the list of waited ones. Starts waiting simply. Packets may be already added by
ADD command (or using of UNFIX command).
started waiting. However it would be registered as received in any case. This command should be always used when you need to send a request and RELIABLY receive a response on it never missing.
).
command.
commands). They will not be displayed in final report (or in the report that is displayed by
SHOWREP PARAMETERS: no parameters
Displays a report which is the same as that displayed while program termination.
command). If this command is typed at the end of script then it omits the displaying of final report (sense there are no packet in it).
command.
}